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Abstract. The Bohr theory treats charged-particle stopping as a sequence of interactions with classical
target electrons bound harmonically to their equilibrium positions. We demonstrate that equivalent re-
sults can be derived on the assumption of free binary collisions governed by a suitable effective potential.
This kind of mapping is rigorous in the limits of distant and close collisions and therefore provides a tool to
evaluate energy losses via binary-scattering theory. This model was developed with the aim of calculating
stopping forces for heavy ions at moderately high velocities, where a classical-orbital calculation is typi-
cally superior to the Born approximation. The effective potential employed holds equally well for dressed
as for stripped ions. Unlike the Bohr theory, the present evaluation avoids a formal division into regimes of
close and distant collisions that do not necessarily join smoothly. Moreover, no perturbation expansion is
necessary. For these reasons the overall accuracy as well as the range of validity of the Bohr model are sig-
nificantly enhanced. Extensive tests have been performed, including comparisons with rigorous evaluations
of the Z3

1 effect, with excellent agreement even where such was not necessarily expected. Moreover, credible
results have been obtained under conditions where the perturbation expansion shows poor convergence. A
comparison with experimental data on O–Al is encouraging, even though shell corrections and projectile
excitation/ionization have not yet been incorporated and input has not yet been optimized.

PACS. 34.50.Bw Energy loss and stopping power – 61.85.+p Channeling phenomena
(blocking, energy loss, etc.) – 52.40.Mj Particle beam interactions in plasma

1 Introduction

The stopping of swift hydrogen and helium ions in mat-
ter is commonly described by the Bethe theory [1] which
treats the excitation of target electrons within the first
Born approximation. Quantitative agreement can be ob-
tained with numerous experimental results provided that
allowance is made for appropriate corrections [2,3]. For
ions heavier than helium the range of validity of the Born
approximation narrows, the lower limit moving to higher
velocities. For the heaviest ions that range reduces prac-
tically to zero [4].

On the other hand, it was recognized long ago [5,6]
that the criteria for validity of the Born approximation
on the one hand, and of a classical-orbital description on
the other, are roughly complementary. As a consequence,
Bohr’s classical theory of particle stopping [7,8] may take
over – at least as a feasible starting point – in the velocity
range v < 2Z1v0 where the Bethe theory becomes less
accurate. Here, Z1 is the atomic number of the projectile
and v0 the Bohr velocity.

While recent attempts to estimate stopping forces on
the basis of a modified Bohr theory are encouraging [9,10],
the Bohr theory in its original form, designed for swift al-
pha particles, needs significant adjustments in order to

allow predictions for heavy-ion stopping. The most obvi-
ous corrections all increase in significance with decreasing
velocity. Pertinent theoretical efforts have so far focused
on screening [9], higher-order perturbation [11], and shell
correction [12].

A fundamental aspect of the Bohr theory is the split-
ting into two regimes for small and large impact param-
eters: close interactions are taken to follow Rutherford’s
law,

T (p, v) =
2mv2

1 + (pmv2/Z1e2)2
(p small) (1)

for the energy loss T versus impact parameter p, while dis-
tant interactions are described as excitations of harmonic
oscillators by a time-varying electric field in the dipole
approximation,

T (p, v) =
2Z2

1e
4ω2

mv4

{[
K1

(ωp
v

)]2
+
[
K0

(ωp
v

)]2}
,

(p large) (2)

where ω is the oscillator frequency and K0,K1 are modi-
fied Bessel functions in standard notation.
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Fig. 1. Energy transfer T per collision event versus impact
parameter p in Bohr theory with ξ = mv3/Z1e

2ω = 0.1 to 10
(right to left).

Figure 1, showing T (p, v) in appropriate dimensionless
units, i.e. the Bohr parameter ξ = mv3/Z1e

2ω for the
beam velocity and ωp/v for the impact parameter, illus-
trates the interplay between the two regimes defined by
equations (1, 2). It is seen that they join smoothly at high
velocities (mv3/Z1e

2ω & 10) while significant uncertain-
ties must arise in any attempt to interpolate in the velocity
range ξ . 1, where a reliable theory is urgently needed
and where the Bohr velocity criterion is well fulfilled
[8,9].

The existence of the two regimes has been a particu-
larly serious problem in the classical theory of the polar-
ization or Z3

1 correction (Barkas effect), where the close-
collision regime was in fact neglected initially [13,14].
Even though an estimate covering that domain has be-
come available [15], the problem of proper interpolation
persists [11]. A similar, although less severe problem has
come up recently in connection with the shell correction
[12].

Figure 1 indicates that stopping cross-sections

S(v) =
∫ ∞

0

2πp dp T (p, v) (3)

determined by straight-forward integration under the
curves are likely to overestimate the true value within the
given physical model, with the expected error increasing
with decreasing velocity. Our recent study of the polar-
ization correction [11] suggests an even larger error there,
and at the same time the magnitude of the polarization
correction was found to become of comparable size with
the leading term. This is a strong indicator of the need
for an alternative, nonperturbative approach to the Bohr
model.

In the present work we report on an attempt to over-
come the two problems outlined above by reformulating
the Bohr model as a binary-scattering problem governed
by an effective potential. We discuss the theoretical ba-
sis in some detail and demonstrate that the model rig-
orously reproduces the predictions of the Bohr theory in

the limit of both close and distant interactions. Since our
calculation is nonperturbational, higher-order Z1 effects
are implicit. Although the description is not rigorous to
higher orders, a stringent test involving existing predic-
tions for Z3

1 corrections is possible. The model also al-
lows for projectile screening. For both reasons it should
qualify for comparison of predicted stopping forces with
measurements on heavy-ion beams after proper inclusion
of shell corrections and allowance for projectile excita-
tion/ionization.

2 Stripped ions

In qualitative terms the Bohr model characterizes
projectile-target interactions by Rutherford’s law, trun-
cated at impact parameters beyond the adiabatic radius
aad = v/ω. One may try to cast this statement into an
effective potential of the form [15,16]

Veff(r) = −Z1e
2

r
e−r/aad . (4)

It will be shown here that predictions of the Bohr stop-
ping theory may be reproduced quantitatively by char-
acterizing the interaction of the projectile with a target
electron as a binary collision governed by the potential
equation (4).

Distant interactions may be evaluated by the mo-
mentum approximation of classical scattering theory, i.e.,
first-order perturbation theory which yields a momentum
transfer P⊥(p, v) = mv θ(p, v) normal to the beam direc-
tion with a c.m.s. scattering angle1 θ which is known [17],

θ(p, v) = − 2Z1e
2

aadmv2
K1

(
p

aad

)
. (5)

From this follows the energy transfer in the small-angle
approximation,

T⊥(p, v) =
1
2
mv2[θ(p, v)]2 =

2Z2
1e

4ω2

mv4

[
K1

(ωp
v

)]2
, (6)

which is identical with the first part of equation (2). We
note that also in the Bohr model, that part reflects mo-
mentum transfer normal to the beam.

The second term in equation (2),

T||(p, v) =
2Z2

1e
4ω2

mv4

[
K0

(ωp
v

)]2
, (7)

which reflects momentum transfer P||(p, v) parallel to the
beam, does not have a direct analogue in binary scatter-
ing. We nevertheless wish to determine its magnitude on
the basis of binary-scattering theory. This requires consid-
eration of the physical origin of that term.

Figure 2 shows a sketch of the electron trajectory in the
Bohr model following a distant impact. In view of the two

1 For a heavy projectile the c.m.s. frame coincides with the
rest frame of the projectile.



P. Sigmund and A. Schinner: Binary stopping theory for swift heavy ions 427

r
0

p P

P

v

Fig. 2. Elliptic orbit of an excited target electron in the Bohr
model.

r
eff

p

v

θ

Fig. 3. Orbit of target electron in binary-scattering model.

different Bessel functions entering P⊥(p, v) and P||(p, v)
the asymptotic orbit is elliptical. Since the potential is
harmonic, T||(p, v) may alternatively be expressed as the
potential energy (1/2)mω2[r0(p, v)]2 at a distance

r0(p, v) =
2Z1e

2

mv2
K0

(ωp
v

)
(8)

from the origin. Note that the electron has received an
angular momentum

J(p, v) = r0(p, v)P⊥(p, v)

= −4Z2
1e

4ω

mv4
K0

(ωp
v

)
K1

(ωp
v

)
. (9)

Figure 3 illustrates the same process but now de-
scribed as a binary-scattering event (without limitation
to the small-angle limit). With the momentum transfer
2mv sin[θ(p, v)/2], the target electron receives angular mo-
mentum

J(p, v) = 2mreff(p, v)v sin
θ(p, v)

2
, (10)

where the asymptotic impact parameter reff(p, v) needs
to be found by locating the trajectory in the laboratory
system. This is a well-established procedure which involves
the time integral [18,19]

τ(p, v) =
√
r2
m − p2 −

∫ ∞
rm

dr

×
(

1√
1− 2Veff(r)/mv2 − p2/r2

− 1√
1− p2/r2

)
, (11)

where rm is the turning point of the trajectory2, defined
as the root of 1− 2Veff/mv

2 − p2/r2 = 0. In Appendix A
we show that

reff(p, v) = 2τ(p, v) cos
θ(p, v)

2
− 2p sin

θ(p, v)
2

(12)

for all impact parameters. In the small-angle limit this
approaches

reff(p, v)→ 2τ(p, v)− pθ(p, v). (13)

The perturbation expansion of the time integral is
sketched in Appendix B. Up to first order in Z1 for the
potential (4), the result is given by

τ(p, v) =
Z1e

2

mv2

[
K0

(ωp
v

)
− ωp

v
K1

(ωp
v

)]
. (14)

Insertion of this as well as equation (5) into equation (13)
yields

reff(p, v) =
2Z1e

2

mv2
K0

(ωp
v

)
(15)

which coincides with r0(p, v), equation (8).
We thus find that classical small-angle scattering by

the screened-Coulomb potential (4) reproduces the predic-
tions of the Bohr model in distant interactions for T⊥(p, v)
as well as the angular-momentum transfer J(p, v). The
latter is closely connected to reff(p, v) which reduces to
r0(p, v) in the small-angle limit. This defines a procedure
to specify the potential-energy transfer by adding a term

W0(p, v) =
1
2
mω2[reff(p, v)]2 (16)

to the kinetic-energy transfer, which reduces to the Bohr
expression for T||(p, v) in the limit of distant interactions.

For closer collisions, both the dipole approximation
and the momentum approximation become inaccurate. At
the same time, the effects of the oscillator force in the Bohr
model and of the screening radius in the binary model be-
come less pronounced, and in the opposite limit of close
collisions, both models merge into Rutherford’s law.

While the potential-energy transfer vanishes for p = 0
since reff(0, v) = 0 according to equation (12), reff can be-
come large enough at intermediate impact parameters to
cause the potential-energy transfer W0(p, v) to exceed the
ionization energy. This unphysical behavior needs to be re-
moved by restricting the range of validity of the harmonic-
oscillator potential. This has been done by means of the
ansatz

1
W (p, v)

=
1

W0(p, v)
+

1
U
, (17)

where U is the ionization energy.
2 Equation (11) is formally valid for both attractive and

repulsive potentials. For attractive interaction a slight rear-
rangement can be made to eliminate mutually compensating
imaginary terms, cf. Appendix B.
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Fig. 4. Energy transfer from bare projectile to target elec-
tron versus impact parameter in dimensionless units. ξ =
mv3/Z1e

2ω = 10. See text.

Determining the energy loss as the sum of a kinetic
and a potential contribution,

T (p, v) = 2mv2 sin2 θ(p, v)
2

+W (p, v), (18)

with the effective potential equation (4) as a basis, pro-
vides a smooth energy-loss function for all impact param-
eters and velocities, reproducing Bohr’s result for distant
interactions and approaching free-Coulomb scattering in
a physically reasonable way.

While the present procedure evidently circumvents the
interpolation problem inherent in the original Bohr model,
it is also clear that the scheme – by not invoking a pertur-
bation expansion – must contain higher-order Z1 contri-
butions. Although there is no reason to expect the same
degree of rigor as in the lowest order, the approach appears
feasible for not too large corrections. After all, the leading
correction term accounts for the collision-induced motion
of the target electron during the interaction time. This
motion is very well approximated in the binary model.
Moreover, a successful estimate of the classical Barkas cor-
rection to the stopping cross section [15] has been based
exclusively on a screened potential of the type of equa-
tion (4). Numerical comparisons in the following section
will illustrate this point.

3 Calculations

Outside the range of validity of the small-angle approx-
imation, both θ(p, v) and τ(p, v) need to be computed
numerically. While such a tabulation exists for repulsive
interaction [19] we found it necessary to develop a code
for accurate numerical integration of the two scattering
integrals also for attractive interaction.

Figures 4–6 show calculated energy losses versus im-
pact parameter in dimensionless units. Although these
computations were nominally performed for Li in C, the
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Fig. 5. Difference between total predicted energy transfer and
prediction from umodified Bohr model. ξ = mv3/Z1e

2ω = 10.
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Fig. 6. Same as Figure 4 for ξ = mv3/Z1e
2ω = 1.

only violation of universal scaling is the limitation of the
potential-energy transfer via equation (17). Therefore the
results are quite representative for all ion-target combi-
nations as far as only stripped ions are considered. The
target has here been characterized by one resonance fre-
quency. This limits the quantitative significance of these
results.

Figure 4 shows results for ξ = 10, i.e., a compar-
atively high projectile speed. It is seen that the en-
ergy transfer is predominantly kinetic. The present result,
i.e., the solid curve labelled “Total, binary” lies slightly
above the Bohr curve, indicating only a small contribution
from higher-order perturbations. Also included is a result
incorporating the conventional Z3

1 correction [13], with the
close-collision part taken from reference [11] based on a
modification of Lindhard’s procedure [15]. The latter re-
sult lies noticeably above the binary one.

A more detailed view of the same data is shown in
Figure 5 where corrections are plotted, i.e. the difference
between the two predictions underlying Figure 4 and the
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unmodified Bohr theory. With the exception of rather
close collisions (ωp/v . 0.1) the agreement is very good,
in particular over the range of impact parameters con-
tributing significantly to the total stopping force. We are
confident that the numerical accuracy of both the binary
results and the Z3

1 expansion is good enough to exclude
the possibility that the small deviation – which appears
to be increasing for ωp/v > 0.5 – reflects computational
error3.

With regard to the behavior at impact parameters
ωp/v . 0.1 we emphasize that the abrupt change in slope
in the curve labelled “Binary minus Bohr” is not a fea-
ture of the binary model but arises from the subtraction
of the Bohr curve. Nonetheless, this hump is much less pro-
nounced than the corresponding one in the curve labelled
Z3

1 evaluated along the scheme presented in reference [11].
Figure 6 shows results corresponding to Figure 4 but

now for ξ = 1, i.e., a lower velocity. Here, higher-order
corrections are significant and may even exceed the lowest-
order term in magnitude. The contribution from potential-
energy transfer is still of minor significance. The Z3

1 -
corrected Bohr curve has now a pronounced cusp as a
result of interpolation between poorly overlapping close-
and distant-collision regimes. This type of cusp, when
noticed recently [11], was in fact our prime motivation
to start the present project. The binary model delivers
a much more credible interpolation.

Figure 7 shows stopping numbers versus ξ, defined via

L =
mv2

4πZ2
1e

4

∫ ∞
0

2πp dp T (p, v), (19)

calculated with and without the restriction of the
potential-energy transfer through equation (17). In the
restricted version the potential-energy transfer appears
to become significant for ξ < 1. It more than doubles
in that velocity range when the restriction equation (17)

3 An independent evaluation of the binary model will emerge
in Appendix D.

is dropped. Dependent on the velocity range and desired
accuracy, refined procedures going beyond equation (17)
may eventually be needed.

4 Screened ions

Projectile screening has recently been incorporated into
the Bohr theory [9] via an interaction potential

V (r) = −q1e
2

r
− (Z1 − q1)e2

r
e−r/as , (20)

where q1e is the ion charge and as a screening radius. Such
a potential function was originally proposed in referen-
ce [20] to describe the stopping of partially-screened ions
in the Born approximation. In the estimates to be reported
below we employ a screening radius [9]

as =
(

1− q1
Z1

)
aTF, (21)

where aTF = 0.8853a0/Z
1/3
1 is the Thomas-Fermi radius

of a neutral projectile atom. This screening radius differs
from the one employed in reference [20].

An effective potential accounting for harmonic binding
as well as screening is given by

Veff(r) = −q1e
2

r
e−r/aad − (Z1 − q1)e2

r
e−r/a (22)

with
1
a2

=
1
a2

ad

+
1
a2

s

· (23)

Intuitive arguments in favor of this ansatz were put for-
ward previously [11]. It is demonstrated in Appendix C
that the equivalence of the Bohr theory and a binary-
collision model, based on unscreened Coulomb interaction
and the potential (4), respectively, remains valid to the
same degree of rigor for screened interaction, based on
the potentials (20) and (22, 23).

Figure 8 shows a comparison between the calculated
energy transfer for a neutral projectile with that of the
corresponding stripped ion discussed in Figure 4. Re-
sults from the present model are compared with the Z3

1 -
corrected Bohr theory [11]. It is seen that the excellent
agreement between the binary curve and the Z3

1 approxi-
mation holds down to significantly smaller impact param-
eters for the neutral projectile than for the stripped ion.
This is caused by a weaker potential due to screening (cf.
also Appendix D).

Figure 9 shows calculated stopping numbers for fully
stripped and neutral ions (“frozen charge states”) as well
as for ions carrying the mean equilibrium charge, the latter
being approximated by a Bohr-type relation,

〈q1〉 = Z1

(
1− e−v/Z

2/3
1 v0

)
, (24)

which has proven useful in our earlier work [10,11]. It is
seen again that the Z3

1 estimates lie significantly above
the binary results in all cases.
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5 Discussion

While a detailed comparison with experiments requires
a number of corrections that are outside the scope of
the present paper [10] we shall at least try to indicate
to what extent the binary model has a chance to improve
agreement with experiment. Figure 10 shows experimental
stopping forces for oxygen ions in aluminium tabulated in
reference [21,26] and three theoretical curves with com-
parable numerical input. Pertinent target data employed
are listed in Table 1. All curves refer to ions in the mean
equilibrium charge state defined by equation (24).

The curve labelled “Bohr”, which here incorporates
screening and shell summation but no polarization ef-
fect, seemingly delivers the best agreement with the data
down to ' 0.2 MeV. Further applications of the underly-
ing scheme were reported recently [10]. We note, however,
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Fig. 10. Comparison of calculated equilibrium stopping forces
with experimental data on O in Al compiled by Paul. Marked
points refer to data from 16 different sources [21,26]. See text.

Table 1. Data utilized in characterizing target properties of
Al. Columns 2 and 3 compiled by Mikkelsen from reference [24],
leading to a whole-atom I-value of 164.14 eV. Column 4 from
reference [25].

Shell no. electrons ~ω(eV) U(eV)

K 1.753 2795.47 1559.6

L 8.304 201.96 84.1

M 2.943 16.89 6.9

that this curve, as do the other two, ignores the shell cor-
rection as well as projectile excitation/ionization. Shell
corrections have not yet been incorporated but are known
to significantly lower the stopping force around the max-
imum. Conversely, projectile excitation/ionization gives
rise to enhanced stopping when the number of electrons
on the projectile becomes comparable with that on the
target. The curve labelled “Bohr + Z3

1” overestimates the
stopping force by an amount that is unlikely to be compen-
sated by the shell correction. The curve labelled “binary”
improves the agreement down to lower velocities, and the
slight overestimate around the maximum is of the order
of the shell correction.

Also the transition to the Bethe regime needs atten-
tion. A pertinent correction [8] can be based on the Bloch
theory [5,4]. The necessity of such a correction is clear
from inspection of Figure 10 at energies/nucleon above
20 MeV.

This work has been supported by the Danish Natural Sci-
ence Research Council (SNF). Discussions with Henning H.
Mikkelsen at various stages of this work are gratefully acknowl-
edged.
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Appendix A: Electron trajectory in binary
scattering

For scattering by a central-force potential, the radial part
of the relative motion is determined by the relation

vdt = ± dr√
1− 2V (r)/mv2 − p2/r2

(25)

which follows from energy and angular-momentum conser-
vation. Let the scattering plane be the x−y plane. Then,
for an incoming trajectory

x = vt; y = p, (26)

integration of equation (25) yields

r(t) = vt+ 2
√
r2
m − p2 − 2

∫ ∞
rm

dr

×
(

1√
1− 2V (r)/mv2 − p2/r2

− 1√
1− p2/r2

)
(27)

for the outgoing trajectory at distances where V (r) is neg-
ligibly small.

Writing equation (27) in the form

r(t) = vt+ 2τ(p, v), (28)

τ(p, v) being defined by equation (11), we find the asymp-
totic trajectory in relative coordinates,

x(t) =
[
vt+ 2τ(p, v)

]
cos θ(p, v), (29)

y(t) =
[
vt+ 2τ(p, v)

]
sin θ(p, v), (30)

and hence

xe(t) = vt− [vt+ 2τ(p, v)] cos θ(p, v) (31)
ye(t) = p− [vt+ 2τ(p, v)] sin θ(p, v) (32)

for the electron motion in the laboratory system.
The minimum value of [xe(t)]2 + [ye(t)]2 delivers the

distance reff(p, v) of the asymptotic trajectory from the
origin as defined in Figure 3,

r2
eff =

(
2τ(p, v) cos

θ(p, v)
2
− p sin

θ(p, v)
2

)2

, (33)

from where equation (12) follows, the sign being deter-
mined from the behavior at small scattering angles.

Appendix B: Perturbation expansion
of the time integral

A procedure for perturbation expansion of classical scat-
tering integrals has been developed in reference [22]. Writ-
ing the time integral equation (11) in the form

τ(p, v) =
∫ ∞
p

dr√
1− p2/r2

−
∫ ∞
rm

dr√
1− 2V (r)/mv2 − p2/r2

, (34)

C

Re(p)

Jm(p)

prm

C1

C 2

+  +  +  +  +  +  +  +  +
-  -  -  -  -  -  -  -  -

Fig. 11. Integration path C for time integral. Attractive inter-
action assumed.

we pull the path of integration into the complex plane
in accordance with Figure 11. A cut is introduced along
the positive x-axis from the lower limit of integration to
infinity, the sign at the edges being defined in the figure.
This leads to

τ(p, v) =
1
2

∫
C

dr

(
1√

1− p2/r2

− 1√
1− 2V (r)/mv2 − p2/r2

)
, (35)

here a common integration path C has been chosen by
making use of Cauchy’s theorem.

Taylor expansion up to the first order in V (r) then
yields

τ(p, v) = − 1
2mv2

∫
C

dr
V (r)

(1− p2/r2)3/2
(36)

or, after partial integration,

τ(p, v) = − 1
2mv2

[
− 1√

r2 − p2
r2V (r)

∣∣∣∣C2

C1

+
∫
C

1√
r2 − p2

d
dr
(
r2V (r)

)]
. (37)

The first term in the brackets vanishes since both end
points C1 and C2 of C lie at infinity. The remaining in-
tegral has an integrable singularity at r = p. Hence, the
integration path can be pulled back to the real axis, and
after insertion of equation (4) we obtain

τ(p, v) =
Z1e

2

mv2

∫ ∞
p

dr√
r2 − p2

(
1− r

aad

)
e−r/aad

=
Z1e

2

mv2

[
K0

(
p

aad

)
− p

aad
K1

(
p

aad

)]
, (38)

in agreement with equation (14).

Appendix C: Effective potential for dressed ion

The model potential (22) in conjunction with equa-
tion (23) was introduced in reference [11] on qualita-
tive grounds: according to Bohr [6], equation (23) defines



432 The European Physical Journal D

the screening radius for a combination of two exponen-
tially screened potentials. The present appendix serves to
demonstrate that binary-scattering theory applied to this
model potential rigorously reproduces the energy trans-
fer predicted from Bohr theory for the potential (20). We
may restrict our attention to the screening region (r > as)
in that context. Only the case of as < aad is of practical
interest since screening is ineffective for as > aad.

Bohr stopping theory in the perturbation limit for
a screened-Coulomb potential of the form of equation (20)
leads to [9]

T (p, v) =
2Z2

1e
4ω2

mv4

{[
βK1(ζ) + (1− β)αK1(αζ)

]2

+
[
βK0(ζ) + δK0(αζ)

]2
}

(39)

with

β =
q1
Z1
, ζ =

ωp

v
, α =

√
1 +

(aad

a

)2

. (40)

Conversely, in the binary model the scattering angle for
the potential equation (22) follows by generalization of
equation (5)

θ(p, v) = − 2q1e2

aadmv2
K1

(
p

aad

)
− 2(Z1 − q1)e2

amv2
K1

(p
a

)
(41)

in the small-angle approximation. The time integral may
be found by generalization of equation (14),

τ(p, v) =
q1e

2

mv2

[
K0

(
p

aad

)
− p

aad
K1

(
p

aad

)]
+

(Z1 − q1)e2

mv2

[
K0

(p
a

)
− p

a
K1

(p
a

)]
, (42)

and hence,

r0(p, v) = 2τ(p, v)− pθ(p, v) =
2q1e2

mv2
K0

(
p

aad

)
+

2(Z1 − q1)e2

mv2
K0

(p
a

)
. (43)

Insertion of equations (41, 43) into

T (p, v) =
1
2
mv2[θ(p, v)]2 +

1
2
mω2[r0(p, v)]2 (44)

is readily seen to reproduce equation (39).

Appendix D: Higher-order perturbation theory

Higher-order perturbations in classical binary-scattering
theory were analysed by Lehmann and Leibfried [22]. The
qualitative conclusion emerging from that work is that

higher-order terms provide a good indicator of the limits
of first-order perturbation theory but do not substantially
extend its range of applicability in terms of impact param-
eter and/or velocity. We therefore restrict our attention
to the leading (Z3

1 ) correction, even though evaluation of
terms of significantly higher than third order would be
straight-forward. Expanding

θ(p, v) = θ1(p, v) + θ2(p, v)... (45)
τ(p, v) = τ1(p, v) + τ2(p, v)... (46)

in powers of the potential Veff(r), equation (4) or equa-
tion (22), we find

T (p, v) = 2mv2 sin2 θ(p, v)
2

=
1
2
mv2

[
θ1(p, v)2 + 2θ1(p, v)θ2(p, v)...

]
(47)

and

W (p, v) =
1
2
mω2reff(p, v)2

=
1
2
mω2

{[
2τ1(p, v)− pθ1(p, v)

]2

+ 2
[
2τ1(p, v)−pθ1(p, v)

][
2τ2(p, v)− pθ2(p, v)

]
...

}
.

(48)

θ1(p, v) and τ1(p, v) have been found in Section 2 and Ap-
pendix C. An expression for θ2(p, v) may be found in ref-
erence [22],

θ2(p, v) = − 1
(mv2)2

∫ ∞
p

r dr

p
√
r2 − p2

d2

dr2

(
r2Veff(r)2

)
,

(49)

and τ2(p, v) has been determined by carrying out the cal-
culation reported in Appendix B to the next order, result-
ing in

τ2(p, v) = − 1
2(mv2)2

∫ ∞
p

dr√
r2 − p2

×
(

3
d
dr

+ r
d2

dr2

)(
r2Veff(r)2

)
. (50)

The screened potential equation (22) leads to

θ2(p, v) = − 2
ξ2

[
2β2

1 K1 (2ζ) + 2(1− β1)2α2 K1 (2αζ)

+ (1 + α)2
β1(1− β1)K1 ((1 + α)ζ)

]
(51)

and

2τ2(p, v)− pθ2(p, v) =
6v
ωξ2

[
β2

1 K0 (2ζ) + (1− β1)2αK0 (2αζ)

+ (1 + α) β1(1− β1)K0 ((1 + α)ζ)] . (52)
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Fig. 12. Comparison of different approximations to Z3
1 correc-

tion. “Exact”: from reference [11]; kinetic: from equation (47);
potential: from equation (48); total: sum of kinetic and poten-
tial; upper graph: stripped ion; lower graph: neutral projectile.

Figure 12 shows results for the system discussed in Fig-
ures 5 and 8. Comparison of the upper graph with Fig-
ure 5 shows near-perfect agreement between the binary
evaluation and its perturbation expansion at large impact
parameters, as it should be, and that agreement holds
down to ωp/v ' 0.1. The lower graph shows even better
agreement for a neutral projectile, as was found already
in Figure 8. Figure 13 shows the relative significance of
the third-order perturbation in both the kinetic and the
potential contribution. It is seen that both ratios drop off
much more rapidly in case of the neutral projectile than
for the stripped ion. Clearly, with a decreasing interaction
force the significance of higher-order perturbations must
decrease.
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Fig. 13. Ratio of third-order to second-order contributions
to energy loss in the binary model evaluated from equa-
tions (47, 48).
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See text.

Appendix E: Approximate stopping numbers
L(ξ) for point charge interacting
with a harmonic oscillator

We conclude by adding another iteration to an ongoing se-
ries of approximations to the stopping number L = L(ξ) in
the Bohr model. Within the physical model (point charge
interacting with one harmonically-bound target electron)
L(ξ) is a universal function [15]. In addition to Bohr’s orig-
inal logarithmic expression, Figure 14 shows the numerical
interpolation given in reference [8] and an analytical for-
mula mentioned in reference [23]. The rather large differ-
ence between the second and the third curve was noticed
previously, and it was asserted that the true result was
intermediate [9]. While this is presumably true within the
lowest order of perturbation theory, higher-order pertur-
bations raise the predicted curve significantly even above
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the numerical interpolation, as is seen from the binary
curve. We have not added a Z3

1 -corrected curve of the type
discussed in reference [11] and included in Figure 7. While
the dependence on impact parameter determined in that
model has been very useful as a standard for comparison
with the present approach, the accuracy of the predicted
stopping numbers was estimated to ∼ 25% in reference
[11]. Figure 9 shows that those results lie systematically
above the binary predictions, the difference reaching from
a few per cent to ∼ 30% over the range of ξ-values covered
in the graph.

References

1. H. Bethe, Ann. Physik 5, 324 (1930).
2. U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
3. P. Sigmund, Nucl. Instrum. Meth. B 135, 1 (1998).
4. J. Lindhard, A.H. Sørensen, Phys. Rev. A 53, 2443 (1996).
5. F. Bloch, Ann. Physik 16, 285 (1933).
6. N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 18, 1 (1948).
7. N. Bohr, Philos. Mag. 25, 10 (1913).
8. P. Sigmund, Phys. Rev. A 54, 3113 (1996).
9. P. Sigmund, Phys. Rev. A 56, 3781 (1997).

10. H. Paul, A. Schinner, P. Sigmund, Nucl. Instrum. Meth. B
164-165, 212 (2000).

11. A. Schinner, P. Sigmund, Nucl. Instrum. Meth. B 164-
165, 220 (2000).

12. P. Sigmund, Eur. Phys. J. D 12, 111 (2000).
13. J.C. Ashley, R.H. Ritchie, W. Brandt, Phys. Rev. B 5,

2393 (1992).
14. J.D. Jackson, R.L. McCarthy, Phys. Rev. B 6, 4131 (1972).
15. J. Lindhard, Nucl. Instrum. Meth. 132, 1 (1976).
16. A.F. Lifschitz, N. Arista, Phys. Rev. A 57, 200 (1998).
17. J.A. Brinkman, J. Appl. Phys. 25, 961 (1954).
18. G. Leibfried, Bestrahlungseffekte in Festkörpern (Teubner,

Stuttgart, 1965).
19. M.T. Robinson, Table of Classical Scattering Integrals,

Tech. Rep. ORNL-4556, Oak Ridge National Laboratory
(1970).

20. W. Brandt, M. Kitagawa, Phys. Rev. B 25, 5631 (1982).
21. M.J. Berger, H. Paul, in Atomic and Molecular Data

for Radiotherapy and Radiation Research (International
Atomic Energy Agency, Vienna, 1995), No. IAEA-
TECDOC-799, Chap. 7, pp. 415–546.

22. C. Lehmann, G. Leibfried, Z. Phys. 172, 465 (1963).
23. J.D. Jackson, Classical Electrodynamics (John Wiley &

Sons, New York, 1975).
24. D.Y. Smith, E. Shiles, M. Inokuti, edited by E.D. Palik,

Handbook of Optical Constants of Solids (Academic Press,
Orlando, 1985), Vol. 1, p. 369.

25. K.D. Sevier, Low Energy Electron Spectrometry (Wiley,
New York, 1972).

26. H. Paul, personal communication, 2000.


